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Abstract
The construction of N-dimensional (ND) integrable systems from coalgebras
is reviewed. In the case of Poisson coalgebras, a necessary condition for the
integrability of the ND coalgebra Hamiltonian coming from a given coalgebra is
obtained in terms of the dimension of the symplectic realization and the number
of nonlinear Casimir functions. From this viewpoint, the full set of three-,
four- and five-dimensional Lie–Poisson coalgebras is analysed, and many new
families of multiparametric ND integrable systems coming from the cases that
fulfil the integrability condition are obtained, including the explicit form of the
integrals of the motion. The superintegrability of these Hamiltonians is also
emphasized, and the generalization of the whole construction to the quantum
mechanical case is straightforward.

PACS numbers: 02.30.Ik, 02.20.Uw

1. Introduction

Coalgebras are either Poisson or commutator algebras endowed with a compatible
comultiplication structure, and have been recently shown to be the ‘hidden’ symmetries
underlying the integrability properties of a wide class of N-dimensional (ND) (super)integrable
classical and quantum Hamiltonian systems (see [1–10] and references therein). In this
construction, once a symplectic (respectively operatorial) realization of the coalgebra is given,
their generators play the role of dynamical symmetries of the Hamiltonian, whilst the coproduct
map of the coalgebra is used to ‘propagate’ the integrability to arbitrary dimension.

From this coalgebra approach, several well-known (super)integrable systems have been
recovered and some integrable deformations for them, as well as new integrable systems,
have also been obtained. In particular, this integrability-preserving coalgebra deformation
procedure has been used to introduce both superintegrable and integrable-free motions on
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spaces with either constant or variable curvature, and (super)integrable potential terms can
also be considered on such spaces [7–10].

In this paper, we get a deeper and more systematic viewpoint to this algebraic approach to
Hamiltonian integrability, where the role of symplectic realizations of Poisson coalgebras is
emphasized. In particular, we perform a detailed analysis of three-, four- and five-dimensional
Lie coalgebras that admit symplectic realizations such that the latter lead to new infinite families
of completely integrable (in fact, superintegrable) Hamiltonian systems with N degrees of
freedom. Such systems are fully constructed, together with the explicit form of their integrals
of the motion. In this way, we present a more global perspective on both the possibilities and
limitations of the coalgebra symmetry approach.

The structure of the paper is as follows. In section 2, the construction of ND Hamiltonian
systems endowed with coalgebra symmetry is reviewed. In section 3, a necessary condition
for the complete integrability of the Hamiltonian in terms of the symplectic realization and
the number of nonlinear Casimirs of the coalgebra is found. The intrinsic superintegrability
properties of the coalgebra approach are also summarized. The following sections are devoted
to the systematic construction of ND integrable Hamiltonians for all the three-, four- and
five-dimensional Lie–Poisson algebras whose symplectic realizations fulfil the integrability
condition. We emphasize that many of these integrable systems are here introduced for the
first time. A closing section including some remarks and comments ends the paper.

2. Hamiltonian systems on Poisson coalgebras

We recall that a coalgebra (A,�) is a (unital, associative) algebra A endowed with a coproduct
map [11]:

� : A → A ⊗ A, (2.1)

which is coassociative

(� ⊗ id) ◦ � = (id ⊗ �) ◦ �. (2.2)

In addition, � has to be an algebra homomorphism from A to A ⊗ A:

�(ab) = �(a)�(b), ∀ a, b ∈ A. (2.3)

Moreover, if A is a Poisson algebra and

�({a, b}A) = {�(a),�(b)}A⊗A, ∀ a, b ∈ A, (2.4)

we shall say that (A,�) is a Poisson coalgebra.
Let us summarize the general construction of [1]. Let (A,�) be a Poisson coalgebra

with l generators Xi, (i = 1, . . . , l), and r is the number of functionally independent Casimir
functions Cj (X1, . . . , Xl) (with j = 1, . . . , r). Among them, a certain subset of R Casimir
functions will be nonlinear functions of the generators of the coalgebra, and will be the relevant
ones as far as integrability is concerned.

The coassociative coproduct � ≡ �(2) has to be a Poisson map with respect to the usual
Poisson bracket on A ⊗ A:

{Xi ⊗ Xj,Xr ⊗ Xs}A⊗A = {Xi,Xr}A ⊗ XjXs + XiXr ⊗ {Xj,Xs}A. (2.5)

Then, the mth coproduct map �(m)(Xi)

�(m) : A → A ⊗ A ⊗ · · ·m) ⊗ A, (2.6)

can be defined by applying recursively the coproduct �(2) in the form

�(m) := (id ⊗ id ⊗ · · ·m−2) ⊗ id ⊗ �(2)) ◦ �(m−1). (2.7)

Such an induction ensures that �(m) is also a Poisson map.
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Table 1. Functions obtained by applying the coproduct map.

X1 X2 · · · Xl C1 C2 · · · Cr

�(2)(X1) �(2)(X2) · · · �(2)(Xl) �(2)(C1) �(2)(C2) · · · �(2)(Cr )

�(3)(X1) �(3)(X2) · · · �(3)(Xl) �(3)(C1) �(3)(C2) · · · �(3)(Cr )

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

�(N)(X1) �(N)(X2) · · · �(N)(Xl) �(N)(C1) �(N)(C2) · · · �(N)(Cr )

In this way, we can construct the set of functions shown in table 1. From them, given
a smooth function H(X1, . . . , Xl), the N-sites Hamiltonian is defined as the Nth coproduct
of H:

H(N) := �(N)(H(X1, . . . , Xl)) = H(�(N)(X1), . . . , �
(N)(Xl)). (2.8)

From [1] it can be proven that the set of r · N functions (m = 1, . . . , N; j = 1, . . . , r)

C
(m)
j := �(m)(Cj (X1, . . . , Xl)) = Cj (�

(m)(X1), . . . , �
(m)(Xl)), (2.9)

Poisson-commute with the Hamiltonian{
C

(m)
j ,H (N)

}
A⊗A⊗···N)⊗A

= 0, (2.10)

and is in involution:{
C

(m)
i , C

(n)
j

}
A⊗A⊗···N)⊗A

= 0, m, n = 1, . . . , N, i, j = 1, . . . , r. (2.11)

This construction is completely general, and holds when the Poisson bracket is replaced
by the commutator, thus providing an immediate generalization of this approach to the case
of quantum mechanical systems, for which the usual ordering prescriptions are taken into
account.

There are two main classes of coalgebras to be used to generate ND integrable systems
through this procedure. The first one are the Lie–Poisson algebras g∗ with generators
Xi(i = 1, . . . , l) and Casimir functions Cj (X1, . . . , Xl)(j = 1, . . . , r), which are always
endowed with the (primitive) coalgebra structure:

�(Xi) = Xi ⊗ 1 + 1 ⊗ Xi. (2.12)

Then, a very natural choice is to consider Hamiltonians H(X1, . . . , Xl) that, under the iterated
application of the coproduct map, will generate dynamical systems on g∗ ⊗ g∗ ⊗ · · ·N) ⊗ g∗

with constants of the motion in involution coming from the nonlinear Casimir functions. These
will be the kind of systems that will be systematically explored in this paper.

The second one are the Poisson analogues of quantum algebras and groups [11], which are
also (deformed) coalgebras (Az,�z) (where z is the deformation parameter). Consequently,
any function of the generators of a given ‘quantum’ Poisson algebra (with deformed Casimir
elements Cz,j ) will provide a deformation of the Hamiltonian constructed in terms of the
undeformed Lie–Poisson coalgebra. Some of these systems have been already explored in
the previous literature (for instance, in [1, 2, 7]), and we stress that all the systems presented
here can be deformed without altering their integrability properties provided that appropriate
coalgebra deformations are constructed. In this respect, we stress that the problem of the
classification of quantum deformations is only fully solved for all 3D Lie algebras and for
some isolated cases in slightly higher dimensions (see [3] and references therein).
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3. Symplectic realizations and complete integrability

For any l-dimensional Poisson coalgebra (A,�) and for any smooth Hamiltonian function
H depending on l variables, we can construct a Hamiltonian system on the Poisson manifold
A⊗N constructed as N-tensor copies of A. This is a ‘cluster-type’ dynamical system [5] with
l · N dynamical variables whose evolution equations are

Ẋ(i,m) = {X(i,m),H
(N)}, i = 1, . . . , l, m = 1, . . . , N, (3.1)

where X(i,m) denotes the generator Xi living on the mth copy of A. The r Casimir functions of
A generate a maximum number of r ·N integrals of the motion for H(N) (see table 1) but since,
in general, l − r � 2 we have always less than l · N − 1 integrals and, therefore, complete
integrability for H cannot be reached in terms of the ‘algebraic’ dynamical variables X(i,m).

However, we can get a specialization of the coalgebra formalism by working on the
symplectic leaves of the initial Poisson coalgebra A, that can be parametrized through suitable
symplectic realizations. If A has r independant Casimir functions, a symplectic leaf of A

(always even dimensional) will be denoted by A(k1,k2,...,kr ), where the leaf is characterized by
a given set of constant values (k1, k2, . . . , kr ) for the Casimir functions.

An s-dimensional symplectic realization D for A(k1,k2,...,kr ) is given (locally) in terms of s
pairs (qi, pi) of canonical Darboux variables

D : x → x(q1, p1, q2, p2, . . . , qs, ps), (3.2)

where x is any point on A(k1,k2,...,kr ). Different symplectic leaves A(k1,i ,k2,i ,...,kr,i ) can be chosen
for the different copies of A within A⊗N . In this way, H(N) is defined on the Nth tensor
product of the symplectic leaves

A(k1,1,k2,1,...,kr,1) ⊗ A(k1,2,k2,2,...,kr,2) ⊗ · · · ⊗ A(k1,N ,k2,N ,...,kr,N ), (3.3)

where ki,m is the value of the ith Casimir for the mth symplectic leaf.
If we consider symplectic realizations with the same dimension s for all the sites in the

tensor product chain, H(N) given by (2.8) turns out to be a function of N · s pairs of canonical
variables, i.e. it defines a Hamiltonian system with N · s degrees of freedom. Therefore, we
need a number of (N · s − 1) independent and globally defined constants of the motion in
involution to state that such Hamiltonian defines a completely integrable system.

3.1. Integrability conditions

At this point, we have to characterize the number of integrals that the coalgebra formalism
provides. First of all, note that under the symplectic realizations that we are going to consider,
the coproducts of linear Casimirs give just a sum of numerical constants with no dynamical
information. Thus, as far as integrability properties are concerned, we have to consider only
nonlinear Casimirs, and for each of them we get (N −1) integrals coming from the 2, . . . , N th
coproducts (the one-site evaluation of such Casimirs gives, by construction, constants). Since
we have R nonlinear Casimirs (hereafter we will assume that R � 1, since coalgebras without
any nonlinear Casimir will be excluded), we get a maximum possible number of integrals in
involution given by

(N − 1) · R. (3.4)

In order to get complete integrability we should have enough number of integrals, which
means that

N · s − 1 � (N − 1) · R,
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thus we need that the chosen symplectic realization D of A fulfils

s � R − R − 1

N
. (3.5)

Therefore, the necessary condition for complete integrability is as follows:

• The symplectic realization has to be of the type s = 1 for coalgebras with R = 1.
• The symplectic realization has to be of the type s < R for coalgebras with R > 1.

Obviously, this condition is not sufficient since the functional independence of a (N · s − 1)-
dimensional subset of integrals has to be explicitly checked in each case. Note that this
condition does not depend explicitly on the dimension l of the coalgebra and that low values
of s are certainly preferred from the integrability viewpoint.

3.2. Generic symplectic realizations

Let us now consider a particular type of symplectic realizations whose s is always fixed by the
dimension l and the number r of independant Casimir functions of the coalgebra. We shall
call ‘generic’ the symplectic realization with dimension s = sm given by

sm = l − r

2
. (3.6)

This symplectic realization is ‘generic’ in the sense that will incorporate as many parameters
(k1, . . . , kr ) as the number of Casimir functions of the coalgebra. Certainly, symplectic
realizations with s < sm could exist, but they are not ‘generic’ in the sense that can give rise
to degeneracies in the Casimir functions (for an explicit example, see [4]).

The sufficient condition for integrability on the generic symplectic realization leads to

sm = l − r

2
� R − R − 1

N
, (3.7)

which leads to the final expression

l � (2R + r) − 2

N
(R − 1), (3.8)

which gives us the integrability condition in terms of the dimension l and the number R.
Thus, we get that the complete integrability for the generic symplectic realization is achieved
provided that

• The dimension l � 2R + r = 2 + r in the case of R = 1 coalgebras.
• The dimension l < 2R + r in the case of R > 1 coalgebras.

In this work, we will systematically consider all the Lie coalgebras with l � 5 for which
their generic symplectic realizations fulfil the integrability condition, and we will construct
all the completely integrable systems associated with them. Throughout the paper, we shall
follow the Lie algebra classifications and notation summarized in [12].

The following two remarks are in order:

• For the classical simple Lie algebras, R = r so we have that for R = 1 coalgebras the
condition is l � 3 and for R > 1 coalgebras we should have that l < 3R. Therefore, apart
from the rank 1 cases, this result excludes all simple Lie algebras to provide complete
integrable systems in the generic symplectic realization.

• Let us consider any Lie coalgebra in which the generic symplectic realization has sm = 1.
In that case, provided that R � 1, the coalgebra fulfils always the integrability condition
under that symplectic realization and integrable systems can always be constructed.
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3.3. Coalgebraic superintegrability

Note that the coassociativity condition (2.2) on the comultiplication map � provides a ‘two-
fold way’ for the definition of the image of the generators on A⊗A⊗A, that will be essential
as far as superintegrability is concerned. In fact, this ‘two-fold way’ can be generalized to
the case of the Nth coproduct and, instead of (2.7), another recursion relation for the mth
coproduct map can be defined [6]:

�
(m)
R := (�(2) ⊗ id ⊗ · · ·m−2) ⊗ id) ◦ �

(m−1)
R . (3.9)

Due to the coassociativity property of the coproduct, this new map will provide exactly the
same expressions for the Nth coproduct of any generator. However, if we label from 1 to N
the sites of the chain of N copies of A, lower dimensional coproducts �(m) (with m < N) will
be ‘different’ in the sense that �(m) will contain objects living on the tensor product space
1⊗2⊗· · ·⊗m, whilst �

(m)
R will be defined on the sites (N −m+ 1)⊗ (N −m+ 2)⊗· · ·⊗N .

Therefore, the coalgebra symmetry of a given Hamiltonian gives rise to two ‘pyramidal’ sets
of r · N integrals of the motion in involution that Poisson-commute with H(N) [6]. The ‘right
set’ of integrals gives rise to some degree of superintegrability of the coalgebra-symmetric
Hamiltonians which is, at most, quasi-maximal (note that (2N − 3) integrals apart from the
Hamiltonian is the maximum possible number of functionally independent integrals, since
both sets have �(N)(C) ≡ �

(N)
R (C) in common). So, all the ND systems that will be presented

in this paper are, by construction, not only integrable, but quasi-maximally superintegrable.
Moreover, for some specific choice of the Hamiltonian function, the system could even be
maximally superintegrable. In this case, the remaining independent integral of the motion has
to be found by other methods different from the coalgebra construction.

4. Integrable systems from 3D Lie coalgebras

By following the known classifications summarized in [12], we first consider the set of nine
non-isomorphic 3D (l = 3) real Lie algebras, all of them with r = 1 (note that the generators
ei in [12] are now written as Ji). Their generic symplectic realizations have been computed
and are given in table 2.

Only one of these algebras (namely, the Heisenberg algebra A3,1) has R = 0 (only one
linear Casimir). This will be the only case in which the construction does not provide any
dynamically relevant constant of the motion, since the Casimir coincides with the central
generator J1 and its mth coproducts are just numerical constants.

The rest of the 3D Lie coalgebras have R = 1 and, since sm = (3 − 1)/2 = 1, we do
have complete integrability for all the latter cases. Therefore, the ‘one-particle’ symplectic
realizations given in table 2 provide automatically infinite families of ND completely integrable
(and in this case, quasi-maximally superintegrable) systems. In table 2, the constant k is just
the value that the Casimir C takes under the given symplectic realization. Note that, in many
cases, if k = 0 we would get a lower dimensional algebra, a case that we do not consider.
We also point out that two symplectic realizations with the same value for k can always be
related through a canonical transformation. This is the case of the Aα

3,8 algebra, for which four
different symplectic realizations are explicitly provided in order to illustrate the multiplicity
of apparently different systems that share the same underlying coalgebra symmetry.

In order to get classical Hamiltonian systems defined through real symplectic realizations,
we shall not consider in this paper the coalgebra Aα

3,7 whose Casimir function is complex, and
we will also restrict the values of the constant k, if needed.

In order to shorten the presentation of the results, for each Lie coalgebra we will give
(a) the explicit non-vanishing commutation rules (that have to be understood as Poisson

6
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Table 2. Generic symplectic realizations and Casimirs for 3D Lie–Poisson algebras.

J1 J2 J3 C

A3,1 k p −kq J1 k �= 0

A3,2 k e
p
k p e

p
k −kq J1 e

− J2
J1 k �= 0

A3,3
p2

2k
p2

2 − pq
2

J2
J1

k �= 0

A3,4 k ep e−p −q J1J2 k �= 0

Aα
3,5 e

p
α k ep −αq J2J

−α
1 k �= 0

A3,6
√

k cos p
√

k sin p −q J 2
1 + J 2

2 k > 0

Aα
3,7

√
k eαp cos p

√
k eαp sin p −q (J 2

1 + J 2
2 )

(
J1+iJ2
J1−iJ2

)iα

A3,8
eq

2 (k − 2p2) p e−q 2J 2
2 + J1J3 + J3J1 ∀ k

(∗ ∗ ∗)
q2

2
pq
2 − p2

2 + k

q2 ∀ k, q �= 0

(∗∗) −pq2 +
√

2kq pq −
√

k
2 p k � 0

(∗) p sin q + p p cos q p sin q − p k = 0

A3,9 p
√

k − p2 cos q
√

k − p2 sin q J 2
1 + J 2

2 + J 2
3 k > 0

brackets) that are fulfilled by the given symplectic realization, (b) the most general integrable
Hamiltonian H(N) that can be constructed as an arbitrary function of the Nth coproduct of the
three generators and (c) the explicit form of the constants of the motion C(m)(m = 2, . . . , N)

coming from the Casimir function. The ‘right’ set of constants of the motion [6] that gives
rise to the quasi-maximal superintegrability of all these systems can be obtained from a given
set C(m) by performing the appropriate permutation of indices, as explained in [6]. Note
that for each Lie coalgebra we obtain an infinite family of superintegrable ND Hamiltonians
(the function H is arbitrary) that depend on N arbitrary constants ki that label the specific
symplectic realization that we have chosen on each copy of the Lie coalgebra.
• A3,2 integrable systems.

[J1, J3] = J1, [J2, J3] = J1 + J2, (4.1)

H(N) = H
(

N∑
i=1

ki e
pi
ki ,

N∑
i=1

pi e
pi
ki ,−

N∑
i=1

kiqi

)
, (4.2)

C(m) =
(

m∑
i=1

ki e
pi
ki

)
e
−

⎛
⎝ ∑m

i=1 pi e

pi
ki

∑m
i=1 ki e

pi
ki

⎞
⎠
, m = 2, . . . , N. (4.3)

Note that in this case (and in some of the remaining examples) the integrals do not depend on
the canonical coordinates qi .
• A3,3 integrable systems.

[J1, J3] = J1, [J2, J3] = J2, (4.4)

H(N) = H
(

N∑
i=1

p2
i

2ki

,

N∑
i=1

p2
i

2
,−

N∑
i=1

piqi

2

)
, (4.5)

C(m) =
(

m∑
i=1

p2
i

) / (
m∑

i=1

p2
i

ki

)
, m = 2, . . . , N. (4.6)

7
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Surprisingly enough, in this case we lose the integrability if we take the same symplectic
realization on all the copies of the A algebra (i.e. if k1 = k2 = · · · = kN ), since all the
integrals are transformed into constants.
• A3,4 integrable systems.

[J1, J3] = J1, [J2, J3] = −J2, (4.7)

H(N) = H
(

N∑
i=1

ki epi ,

N∑
i=1

e−pi ,−
N∑

i=1

qi

)
, (4.8)

C(m) =
m∑

i=1

ki +
m∑

i,j=1
i �=j

ki epi−pj , m = 2, . . . , N. (4.9)

This algebra is just the (1 + 1) Poincaré algebra. An analogue of the Ruijsenaars–Schneider
Hamiltonian [13] was obtained in [1] by using a quantum deformation of this realization.
• Aα

3,5 integrable systems.

[J1, J3] = J1, [J2, J3] = αJ2, (0 < |α| < 1), (4.10)

H(N) = H
(

N∑
i=1

e
pi
α ,

N∑
i=1

ki epi ,−
N∑

i=1

αqi

)
, (4.11)

C(m) =
∑m

i=1 ki epi(∑m
i=1 e

pi
α

)α , m = 2, . . . , N. (4.12)

• A3,6 integrable systems.

[J1, J3] = −J2, [J2, J3] = J1, (4.13)

H(N) = H
(

N∑
i=1

√
ki cos pi,

N∑
i=1

√
ki sin pi,−

N∑
i=1

qi

)
, (4.14)

C(m) =
m∑

i=1

ki +
m∑

i,j=1
i �=j

√
kikj cos(pi − pj ), m = 2, . . . , N. (4.15)

Note that the algebra A3,6 is the two-dimensional Euclidean algebra.
• A3,8 integrable systems.

[J1, J2] = J1, [J1, J3] = −2J2, [J2, J3] = J3, (4.16)

H(N) = H
(

N∑
i=1

eqi

2
(ki − 2p2

i ),

N∑
i=1

pi,

N∑
i=1

e−qi

)
, (4.17)

C(m) =
m∑

i=1

ki +
m∑

i,j=1
i �=j

eqj −qi
(
kj − 2p2

j

)
+ 2

m∑
i,j=1
i �=j

pipj , m = 2, . . . , N. (4.18)
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This is the sl(2, R) 
 so(2, 1) Lie coalgebra, and many different and important integrable
systems can be obtained as H(N) by making use of different symplectic realizations. For
instance, the Calogero–Gaudin Hamiltonian [14, 15]

H(N) =
N∑

i<j

2pipj (1 − cos(qi − qj )) (4.19)

comes from the k = 0 symplectic realization (∗) of A3,8 (the sl(2) algebra) by taking as the
Hamiltonian the Casimir operator C (see [1, 16] for a detailed discussion of this system and its
integrable deformations, and papers [17, 18] for its q-deformed quantum mechanical version).
In general, note that the choice of the symplectic realization drastically changes the ‘shape’
of the Hamiltonian. For example, by using the Gel’fand–Dyson symplectic map (∗∗) with
k = 0, the very same Calogero–Gaudin system reads

H(N) =
N∑

i<j

−pipj (qi − qj )
2. (4.20)

Moreover, the following Hamiltonian

H(N) =
N∑

i=1

(
p2

i

2
− ki

q2
i

)
+ F

(
N∑

i=1

q2
i

)
(4.21)

represents the motion of a particle on the ND Euclidean space under the action of N ‘centrifugal
barriers’ determined by the ki terms and an arbitrary central potential given by the function
F . This is also A3,8 coalgebra-invariant under the symplectic realization (∗ ∗ ∗) [2] of table 2
provided the Hamiltonian function is taken as

H = −J3 + F(2J1).

Therefore, as particular cases, this Hamiltonian reproduces the Smorodinsky–Winternitz
system [19] for F = 2ωJ1 and provides a ND generalization of the Kepler potential when
F = −γ /

√
2J1 (ω and γ are real constants). In fact, this A3,8 coalgebra has been recently

shown to underlie the integrability of the oscillator and Kepler potentials on the ND spaces
with constant curvature [9] and also of the ND spherically symmetric generalization of certain
spaces with non-constant curvature [10].
• A3,9 integrable systems.

[J1, J2] = J3, [J1, J3] = −J2, [J2, J3] = J1, (4.22)

H(N) = H
(

N∑
i=1

pi,

N∑
i=1

√
ki − p2

i cos qi,

N∑
i=1

√
ki − p2

i sin qi

)
, (4.23)

C(m) = −
m∑

i=1

ki + 2
m∑

i=1

p2
i +

m∑
i,j,
i �=j

pipj +
m∑

i,j,
i �=j

cos(qi − qj )

√
p2

i − ki

√
p2

j − kj ,

m = 2, . . . , N. (4.24)

These would be the classical integrable systems provided by N copies of the so(3) algebra.

5. Integrable systems from 4D Lie coalgebras

In this case, the classification [12] provide a set of 12 non-isomorphic 4D (l = 4) real Lie
algebras. Among them, four algebras have R = 0, and will not give rise to integrable systems.
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Table 3. Symplectic realizations for 4D Lie–Poisson algebras with R = 1.

J1 J2 J3 J4 Ci

A4,1 k1 p p2−k2
2k1

−k1q C2 = J 2
2 − 2J1J3 k1 �= 0

A4,3 ep k1 k1 (p − log k2) −q C2 = J1 e
−J3
J2 k1 �= 0, k2 > 0

A4,8 k1
√

p eq k1
√

p e−q − k2
2k1

+ p C2 = J2J3 + J3J2 − 2J1J4 k1 �= 0

A4,10 k1 k1q p
−p2−k2

1q2+k2
2k1

C2 = 2J1J4 + J 2
2 + J 2

3 k1 �= 0

5.1. Algebras with R = 1

We have four Lie algebras with r = 2 and R = 1 (two Casimirs, one of them linear). In
all these cases sm = (4 − 2)/2 = 1, and the integrability condition is fulfilled. The explicit
generic symplectic realizations of these four algebras, together with the explicit form of the
nonlinear Casimir, are given in table 3.
• A4,1 integrable systems.

[J2, J4] = J1, [J3, J4] = J2, (5.1)

H(N) = H
(

N∑
i=1

k1,i ,

N∑
i=1

pi,

N∑
i=1

p2
i − k2,i

2k1,i

,−
N∑

i=1

k1,iqi

)
, (5.2)

C(m) =
m∑

i=1

k2,i +
m∑

i,j=1
i �=j

pipj +
m∑

i,j=1
i �=j

k1,i

k2,j

k1,j

−
m∑

i,j=1
i �=j

p2
i

k1,i

k1,j , m = 2, . . . , N. (5.3)

The algebra A4,1 is the (1+1) extended Galilei Lie algebra, and their associated integrable
systems have been constructed in [3], as well as their integrable deformations.
• A4,3 integrable systems.

[J1, J4] = J1, [J3, J4] = J2, (5.4)

H(N) = H
(

N∑
i=1

epi ,

N∑
i=1

k1,i ,

N∑
i=1

k1,i (pi − log k2,i ),−
N∑

i=1

qi

)
, (5.5)

C(m) =
(

m∑
i=1

epi

)
e
−

∑m
i=1 k1,i (pi−log k2,i )∑m

i=1 k1,i , m = 2, . . . , N. (5.6)

• A4,8 integrable systems.

[J2, J3] = J1, [J2, J4] = J2, [J3, J4] = −J3, (5.7)

H(N) = H
(

N∑
i=1

k1,i ,

N∑
i=1

√
pi eqi ,

N∑
i=1

k1,i

√
pi e−qi ,

N∑
i=1

(
− k2,i

2k1,i

+ pi

))
, (5.8)

C(m) =
m∑

i=1

k2,i +
m∑

i,j=1
i �=j

k2,i

k1,i

k1,j − 2
m∑

i,j=1
i �=j

pik1,j +
m∑

i,j=1
i �=j

e−qi+qj k1,i

√
pipj ,

m = 2, . . . , N. (5.9)

10
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The algebra A4,8 is also known as the oscillator algebra h4. If we take the H function

H = λJ4 + µJ2J3, (5.10)

under the realization with k1,i = 1 and k2,i = 0, we get the following integrable Hamiltonian

H(N) = (λ + µ)

N∑
i=1

pi + 2µ

N∑
i<j

√
pipj cosh(qi − qj ), (5.11)

whose quantum mechanical version was introduced in [20]. The integrals of the motion in
involution in the chosen realization read

C(m) = −2
m∑

i=1

pi + 2
m∑

i,j=1

√
pipj cosh(qi − qj ) = 2

m∑
i,j=1
i �=j

√
pipj cosh(qi − qj ),

m = 2, . . . , N. (5.12)

• A4,10 integrable systems.

[J2, J3] = J1, [J2, J4] = −J3, [J3, J4] = J2, (5.13)

H(N) = H
(

N∑
i=1

k1,i ,

N∑
i=1

k1,iqi,

N∑
i=1

pi,−
N∑

i=1

p2
i + k2

1,iq
2
i − k2,i

2k1,i

)
, (5.14)

C(m) =
m∑

i,j=1

k2,ik1,j

k1,i

−
m∑

i,j=1
i �=j

p2
i k1,j

k1,i

+
m∑

i,j=1
i �=j

k1,ik1,j qiqj +
m∑

i,j=1
i �=j

pipj −
m∑

i,j=1
i �=j

q2
i k1,ik1,j ,

m = 2, . . . , N. (5.15)

In particular, the N-particle Hamiltonian given by H = −J4 + F(J2) gives

H(N) =
N∑

i=1

p2
i + k2

1,iq
2
i − k2,i

2k1,i

+ F

(
N∑

i=1

k1,iqi

)
(5.16)

which is a new completely integrable Hamiltonian for any choice of the function F, with
integrals of the motion independent of F and given by (5.15).

5.2. Algebras with R = 2

We have four more 4D algebras with R = 2. Again, sm = (4 − 2)/2 = 1 and the integrability
condition is fulfilled. One of them (namely, A

a,b
4,6) has a complex invariant, so we discard it.

The generic symplectic realization of the three remaining ones are given in table 4. Note that
in all these cases the Casimir functions depend only on the momenta p. More importantly,
since we have two nonlinear Casimirs, we obtain two sets

{
C

(m)
1

}
and

{
C

(m)
2

}
of (N − 1)

constants of the motion in involution with the Hamiltonian, besides the two additional sets
given by the ‘right’ coproducts.
• Aα

4,2 integrable systems.

[J1, J4] = αJ1, [J2, J4] = J2, [J3, J4] = J2 + J3 (α �= 0), (5.17)

H(N) = H
(

N∑
i=1

kα
1,i

k2,i

epi ,

N∑
i=1

k1,i epi ,

N∑
i=1

k1,ipi epi ,−
N∑

i=1

qi

)
, (5.18)
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Table 4. Symplectic realizations for 4D Lie–Poisson algebras with R = 2.

J1 J2 J3 J4 Ci

Aα
4,2

kα
1

k2
ep k1 ep k1p ep −q C1 = J2 e

− J3
J2 , C2 = Jα

2
J1

k1 �= 0

A4,4 k1 ep k1p ep k1 ep

2 (p2 + k2) −q C1 = J1 e
− J2

J1 , C2 = 2J1J3−J 2
2

J 2
1

k1 �= 0

A
a,b
4,5 (k1a)

1
a ep a eap (k1a)

b
a

k2
ebp −q C1 = Ja

1
J2

, C2 = Jb
1

J3
k1 �= 0

C
(m)
1 =

(
m∑

i=1

k1,i epi

)
e
−
(∑m

i=1 k1,i pi epi∑m
i=1 k1,i epi

)
, C

(m)
2 =

( ∑m
i=1 k1,i epi

)α

(∑m
i=1

kα
1,i

k2,i
epi

) ,

m = 2, . . . , N. (5.19)

• A4,4 integrable systems.

[J1, J4] = J1, [J2, J4] = J1 + J2, [J3, J4] = J2 + J3, (5.20)

H(N) = H
(

N∑
i=1

k1,i epi ,

N∑
i=1

k1,ipi epi ,

N∑
i=1

k1,i epi

2
(p2

i + k2,i ),−
N∑

i=1

qi

)
, (5.21)

C
(m)
1 =

(
m∑

i=1

k1,i epi

)
e
−

∑m
i=1 k1,i pi epi∑m
i=1 k1,i epi , m = 2, . . . , N, (5.22)

C
(m)
2 = 2

( ∑m
i=1 k1,i epi

)(∑m
i=1

k1,i epi

2

(
p2

i + k2,i

)) − (∑m
i=1 k1,ipi epi

)2

(∑m
i=1 k1,i epi

)2 ,

m = 2, . . . , N. (5.23)

• A
a,b
4,5 integrable systems.

[J1, J4] = J1, [J2, J4] = aJ2, [J3, J4] = bJ3, ab �= 0,

− 1 � a � b � 1, (5.24)

H(N) = H
(

N∑
i=1

(k1,ia)
1
a epi ,

N∑
i=1

a eapi ,

N∑
i=1

(k1,ia)
b
a

k2,i

ebpi ,−
N∑

i=1

qi

)
, (5.25)

C
(m)
1 =

( ∑m
i=1(k1,ia)

1
a epi

)a(
a

∑m
i=1 eapi

) , C
(m)
2 =

( ∑m
i=1(k1,ia)

1
a epi

)b

( ∑m
i=1

(k1,i a)
b
a

k2,i
ebpi

) , m = 2, . . . , N.

(5.26)

6. Integrable systems from 5D Lie coalgebras

Non-isomorphic real Lie algebras of dimension five are also fully classified (we use the
notation given in [12] for Mubarakzyanov results). In fact, there are 40 different 5D Lie
algebras with r = 1, 3.
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Table 5. Symplectic realizations for 5D Lie–Poisson algebras with R = 1.

J1 J2 J3 J4 J5 Nonlinear Casimir

A5,1 k1 k2 k1p+ k3
k2

k2p −q C3 = J2J3 − J1J4 k1, k2 �=0

A5,3 k1 k2 p −k2q− k3
2k1

−k1q− p2

2k2
C3 = J 2

3 + 2J2J5 − 2J1J4 k1, k2 �=0

It is easy to check that all the r = 1 cases do not fulfil the integrability condition. This is
obvious for the seven cases in which R = 0. There are also 18 cases with R = r = 1, but for
them sm = (5 − 1)/2 = 2 > R.

So, we are left with 15 cases with r = 3. For all of them the integrability condition holds,
since R = 1, 2, 3 and sm = (5 − 3)/2 = 1. As usual, we will not consider here the five cases
that present complex Casimir functions, so we are left with ten new families of integrable
systems.

6.1. Algebras with R = 1

• A5,1 integrable systems.

[J3, J5] = J1, [J4, J5] = J2, (6.1)

H(N) = H
(

N∑
i=1

k1,i ,

N∑
i=1

k2,i ,

N∑
i=1

(
k1,ipi +

k3,i

k2,i

)
,

N∑
i=1

k2,ipi,−
N∑

i=1

qi

)
, (6.2)

C
(m)
3 =

m∑
i=i

k3,i +
m∑

i,j=1
i �=j

k3,ik2,j

k2,i

−
m∑

i,j=1
i �=j

k2,ik1,jpi +
m∑

i,j=1
i �=j

k1,ik2,jpi, m = 2, . . . , N.

(6.3)

• A5,3 integrable systems.

[J3, J4] = J2, [J3, J5] = J1, [J4, J5] = J3, (6.4)

H(N) =H
(

N∑
i=1

k1,i ,

N∑
i=1

k2,i ,

N∑
i=1

pi,−
N∑

i=1

(
k2,iqi +

k3

2k1,i

)
,−

N∑
i=1

(
k1,iqi +

p2

2k2,i

))
, (6.5)

C
(m)
3 =

m∑
i=i

k3,i +
m∑

i,j=1
i �=j

pipj +
m∑

i,j=1
i �=j

k3,ik1,j

k1,i

−
m∑

i,j=1
i �=j

k2,j

k2,i

p2
i + 2

m∑
i,j=1

k1,ik2,j (qj − qi),

m = 2, . . . , N. (6.6)

The N-particle Hamiltonian H = −J5 + G(−J4) leads to

H(N) =
N∑

i=1

p2
i

2k2,i

+
N∑

i=1

k1,iqi + G

(
N∑

i=1

k2,iqi +
N∑

i=1

k3,i

k1,i

)
, (6.7)

which is completely integrable for any choice of the function G. In particular, a large family of
ND integrable non-homogeneous polynomial potentials are included in this family (see [21]
for an exhaustive study of integrable homogeneous polynomial potentials).
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Table 6. Symplectic realizations for 5D Lie–Poisson algebras with R = 2.

J1 J2 J3 J4 J5 Nonlinear Casimirs

A5,2 k1 p 1
2k1

(p2−k2)
1

6k2
1
(p3−3k2p+2k3) −k1q C2 =J 2

2 −2J1J3, C3 =J 3
2 +3J 2

1 J4−3J1J2J3 k1 �=0

Ac
5,8 k1 k1p k3 ep kc

3
k2

ecp −q C2 = J c
3

J4
, C3 =J3 e

−J2
J1 k1, k3 �=0

A5,10 k1 k1p
k1
2 p2− k2

2k1
k3 ep −q C2 = J 2

2 − 2J1J3, C3 =J4 e
− J2

J1 k1, k3 �=0

6.2. Algebras with R = 2

• A5,2 Integrable systems.

[J2, J5] = J1, [J3, J5] = J2, [J4, J5] = J3, (6.8)

H(N) = H
(

N∑
i=1

k1,i ,

N∑
i=1

pi,

N∑
i=1

1

2k1,i

(
p2

i − k2,i

)
,

×
N∑

i=1

1

6k2
1,i

(
p3

i − 3k2,ipi + 2k3,i

)
,−

N∑
i=1

k1,iqi

)
, (6.9)

C
(m)
2 =

m∑
i=1

k2,i +
m∑

i,j=1
i �=j

pipj −
m∑

i,j=1
i �=j

k1,j

k1,i

(
p2

i − k2,i

)
, m = 2, . . . , N, (6.10)

C
(m)
3 =

(
m∑

i=1

pi

)3

+ 3

(
m∑

i=1

k1,i

)2 (
m∑

i=1

1

6k2
1,i

(
p3

i − 3k2,ipi + 2k3,i

))

− 3

(
m∑

i=1

k1,i

) (
m∑

i=1

pi

) (
m∑

i=1

1

2k1,i

(
p2

i − k2,i

))
, m = 2, . . . , N.

(6.11)

• Ac
5,8 integrable systems.

[J2, J5] = J1, [J3, J5] = J3, [J4, J5] = cJ4 (0 < |c| � 1), (6.12)

H(N) = H
(

N∑
i=1

k1,i ,

N∑
i=1

k1,ipi,

N∑
i=1

k3,i epi ,

N∑
i=1

kc
3,i

k2,i

ecpi ,−
N∑

i=1

qi

)
, (6.13)

C
(m)
2 =

( ∑m
i=1 k3,i epi

)c

(∑m
i=1

kc
3,i

k2,i
ecpi

) , C
(m)
3 =

(
m∑

i=1

k3,i epi

)
e
− (

∑m
i=1 k1,i pi )

(
∑m

i=1 k1,i ) , m = 2, . . . , N.

(6.14)

• A5,10 integrable systems.

[J2, J5] = J1, [J3, J5] = J2, [J4, J5] = J4, (6.15)

H(N) = H
(

N∑
i=1

k1,i ,

N∑
i=1

k1,ipi,

N∑
i=1

(
k1,i

2
p2

i − k2,i

2k1,i

)
,

N∑
i=1

k3,i epi ,−
N∑

i=1

qi

)
, (6.16)
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Table 7. Symplectic realizations for 5D Lie–Poisson algebras with R = 3.

J1 J2 J3 J4 J5

A
a,b,c
5,7 ep eap

k1

ebp

k2

ecp

k3
−q k1, k2, k3 �= 0

A
b,c
5,9 k3 ep k3p ep kb

3
k1

ebp kc
3

k2
ecp −q k3 �=0

Ac
5,11 k2 ep k2p ep k2

2 ebp(p2 + k3)
kc

2
k1

ecp −q k2 �=0

Ac
5,12 k1 ep k1p ep k1

2 ep
(
p2 +k2

)
k1 ep

6

(
2k3 +3k2p+p3

) −q k1 �= 0

Aα
5,15 e−p (p − log k2) ep eαp

k1

eαp

αk1
(αp − log k1k3) −q k2 � 0,

k1
k3

> 0

C
(m)
2 =

m∑
i=1

k2,i +
m∑

i,j=1
i �=j

(
k2,i

k1,i

− k1,ip
2
i

)
k1,j +

m∑
i,j=1
i �=j

k1,ik1,jpipj , m = 2, . . . , N,

(6.17)

C
(m)
3 =

(
m∑

i=1

k3,i epi

)
e
− (

∑m
i=1 k1,i pi )

(
∑m

i=1 k1,i ) , m = 2, . . . , N. (6.18)

6.3. Algebras with R = 3

• A
a,b,c
5,7 integrable systems.

[J1, J5] = J1, [J2, J5] = aJ2, [J3, J5] = bJ3, [J4, J5] = cJ4, abc �= 0,

− 1 � c � b � a � 1, (6.19)

H(N) = H
(

N∑
i=1

epi ,

N∑
i=1

eapi

k1,i

,

N∑
i=1

ebpi

k2,i

,

N∑
i=1

ecpi

k3,i

,−
N∑

i=1

qi

)
. (6.20)

The nonlinear Casimirs for this algebra are

C1 = J1
a

J2
, C2 = J1

b

J3
, C3 = J1

c

J4
, (6.21)

C
(m)
1 =

( ∑m
i=1 epi

)a( ∑m
i=1

eapi

k1,i

) , C
(m)
2 =

(∑m
i=1 epi

)b(∑m
i=1

ebpi

k2,i

) , C
(m)
3 =

(∑m
i=1 epi

)c(∑m
i=1

ecpi

k3,i

) ,

m = 2, . . . , N. (6.22)

• A
b,c
5,9 integrable systems.

[J1, J5] = J1, [J2, J5] = J1 + J2, [J3, J5] = bJ3, [J4, J5] = cJ4

(0 �= c � b), (6.23)

H(N) = H
(

N∑
i=1

k3,i epi ,

N∑
i=1

k3,ipi epi ,

N∑
i=1

kb
3,i

k1,i

ebpi ,

N∑
i=1

kc
3,i

k2,i

ecpi ,−
N∑

i=1

qi

)
. (6.24)
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The nonlinear Casimirs are

C1 = J b
1

J3
, C2 = J c

1

J4
, C3 = J1 e− J2

J1 , (6.25)

C
(m)
1 =

( ∑m
i=1 k3,i epi

)b

(∑m
i=1

kb
3,i

k1,i
ebpi

) , C
(m)
2 =

(∑m
i=1 k3,i epi

)c

( ∑m
i=1

kc
3,i

k2,i
ecpi

) ,

C
(m)
3 =

(
m∑

i=1

k3,i epi

)
e
− (

∑m
i=1 k3,i pi epi )

(
∑m

i=1 k3,i epi ) , m = 2, . . . , N.

(6.26)

• Ac
5,11 integrable systems.

[J1, J5] = J1, [J2, J5] = J1 + J2, [J3, J5] = J2 + J3, [J4, J5] = cJ4 (c �= 0),

(6.27)

H(N) = H
(

N∑
i=1

k2,i epi ,

N∑
i=1

k2,ipi epi ,

N∑
i=1

k2,i

2
epi

(
p2

i + k3,i

)
,

N∑
i=1

kc
2,i

k1,i

ecpi ,−
N∑

i=1

qi

)
.

(6.28)

Again, from the following nonlinear Casimirs we get the constants of the motion for this
system:

C1 = J c
1

J4
, C2 = J1 e− J2

J1 , C3 = 2J3

J1
− J 2

2

J 2
1

, (6.29)

C
(m)
1 =

( ∑m
i=1 k2,i epi

)c

(∑m
i=1

kc
2,i

k1,i
ecpi

) , C
(m)
2 =

(
m∑

i=1

k2,i epi

)
e
− (

∑m
i=1 k2,i pi epi )

(
∑m

i=1 k2,i epi ) , m = 2, . . . , N,

(6.30)

C
(m)
3 =

(∑m
i=1 k2,i epi

(
p2

i + k3,i

))
(∑m

i=1 k2,i epi

) −
(∑m

i=1 k2,ipi epi
)2(∑m

i=1 k2,i epi

)2 , m = 2, . . . , N. (6.31)

• A5,12 integrable systems.

[J1, J5] = J1, [J2, J5] = J1 + J2, [J3, J5] = J2 + J3, [J4, J5] = J3 + J4, (6.32)

H(N) = H
(

N∑
i=1

k1,i epi ,

N∑
i=1

k1,ipi epi ,

N∑
i=1

k1,i

2
epi

(
p2

i + k2,i

)
,

N∑
i=1

k1,i epi

6

(
2k3,i + 3k2,ipi + p3

i

)
,−

N∑
i=1

qi

)
. (6.33)

Nonlinear Casimirs and their associated constants read

C1 = J1 e− J2
J1 , C2 = 2J3

J1
− J 2

2

J 2
1

, C3 = 3J4

J1
− 3J2J3

J12 +
J 3

2

J 3
1

, (6.34)

C
(m)
1 =

(
m∑

i=1

k1,i epi

)
e
− (

∑m
i=1 k1,i pi epi )

(
∑m

i=1 k1,i epi ) , (6.35)
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C
(m)
2 =

(∑m
i=1 k1,i epi

(
p2

i + k2,i

))
(∑m

i=1 k1,i epi

) −
(∑m

i=1 k1,ipi epi
)2(∑m

i=1 k1,i epi

)2 , (6.36)

C
(m)
3 = 1

2

(∑m
i=1 k1,i epi

(
2k3,i + 3k2,i pi + p3

i

))
(∑m

i=1 k1,i epi

)
− 3

2

(∑m
i=1 k1,i pi epi

) ( ∑m
i=1 k1,i epi

(
p2

i + k2,i

))
(∑m

i=1 k1,i epi

)2 +

( ∑m
i=1 k2,ipi epi

)3(∑m
i=1 k1,i epi

)3 .

(6.37)

• Aα
5,15 integrable systems.

[J1, J5] = J1, [J2, J5] = J1 + J2, [J3, J5] = αJ3, [J4, J5] = J3 + αJ4 (|α| � 1), (6.38)

H(N) = H
(

N∑
i=1

epi ,

N∑
i=1

(pi − log k2,i ) epi ,

N∑
i=1

eαpi

k1,i

,

N∑
i=1

eαpi

αk1,i

(
αpi − log k1,ik3,i

)
,−

N∑
i=1

qi

)
. (6.39)

Finally, the complete integrability is given by the following nonlinear Casimirs:

C1 = J α
1

J3
, C2 = J1 e− J2

J1 , C3 = J3 e−α
J4
J3 , (6.40)

C
(m)
1 =

( ∑m
i=1 epi

)α(∑m
i=1

eαpi

k1,i

) , C
(m)
2 =

(
m∑

i=1

epi

)
e
− (

∑m
i=1(pi−log k2,i ) epi )

(
∑m

i=1 epi ) , m = 2, . . . , N, (6.41)

C
(m)
3 =

(
m∑

i=1

eαpi

k1,i

)
· e

−
(
∑m

i=1
eαpi
k1,i

(αpi−log k1,i k3,i ))

(
∑m

i=1
eαpi
k1,i

)

, m = 2, . . . , N. (6.42)

7. Concluding remarks

In higher dimensions, classifications of real Lie algebras and their Casimir invariants are partial
and restricted to certain simple, solvable or nilpotent subclasses, but a significant number of
the latter are known (see, for instance, [22–28]). Thus, the method presented here can be used
to generate many new families of integrable systems provided that, for a given Lie coalgebra
with known Casimir invariants, the integrability criterion is checked in order to determine a
priori which are the symplectic realizations that can lead to integrable systems.

It is also interesting to stress that symplectic realizations that do not fulfil the integrability
condition can also lead to interesting (but partially integrable) Hamiltonian models. This is
the case of the ‘two-photon’ algebra h6, a 6D Lie algebra with r = 2 (therefore s = 1, 2)
that admits an s = 1 symplectic realization [4] for which, among the 2N integrals provided
by the coalgebra, only (2N − 5) of them are functionally independent and (N − 2) are in
involution. Hence, any Hamiltonian H with h6-coalgebra symmetry is ‘almost’ integrable
(only one constant is left), and such a remaining integral does exist for some special choices
of H which can be in some cases connected with the subalgebras of h6 [4].

17



J. Phys. A: Math. Theor. 41 (2008) 304028 A Ballesteros and A Blasco

Finally, we would like to mention that the integrability conditions presented here can be
generalized to the case in which symplectic realizations with different dimension s are used on
each copy of the algebra. It would be also interesting to perform a detailed analysis of some
of the new Hamiltonians presented here, working out explicit the solutions for the equations
of motion. We recall that the latter problem can always be faced through the cluster variables
technique [5] that makes use of the coalgebra symmetry in order to define the appropriate
collective dynamical variables. Work on all these lines is in progress.
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